7 research outputs found

    Hardware Software Synthesis of a H.264 / AVC Baseline Profile Decoder

    Get PDF
    The latest video compression standard is a joint effort between ITU and MPEG known as H.264/AVC. As with any video compression standard the H.264/AVC uses computationally intensive algorithms to maximize performance. During decompression these algorithms must be applied in real-time, processing 30 frames a second. This can be done in software, specialized hardware, or a combination of the two. Software solutions allow for maximum portability and ease of design, but General Purpose Processors (GPP) can not take full advantage of the parallelizable algorithms that the H.264 decoder is based upon. Specialized hardware solutions, on the other hand, allow concurrent data and instruction paths, but do not offer a high level of abstraction for cross platform development. Recent work by Xilinx has resulted in the advent of the MicroBlaze soft-processor that is a stand alone microcontroller built from an FPGA. The MicroBlaze provides a specialized hardware medium to run software on-chip with VHDL entities. The goal of this thesis was to model and simulate a software hardware hybrid H.264/AVC Baseline Profile decoder using VHDL and a soft-processor. It was proposed to divide all highly sequential calculations (run-length and CALVC decoding) and control data flow into software and perform the remaining calculations (prediction, inverse transform, inverse quantization, etc.) in hardware modules. The software runs on Xilinx\u27 s MicroBlaze soft-processor and the hardware was designed using VHDL. A major advantage of soft-processors over GPP\u27s, is that it hardware instantiations reside on-chip with the processor. The software and MicroBlaze soft-processor were simulated in a test bench and the results proved that the MicroBlaze could not handle the encoded bit-stream in real-time. For this reason the hardware interface and hardware decoder were never fully implemented. The scope of the thesis covers the H.264 Baseline Profile standard, MicroBlaze processor, the implemented software solution, and the proposed hardware counterpart

    Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents

    Get PDF
    A series of dibromomaleimides have been shown to be very efficacious at insertion into peptidic disulfide bonds. This conjugation proceeds with a stoichiometric balance of reagents in buffered solutions in less than 15 min to give discrete products while maintaining the disulfide bridge and thus peptide conformation. The insertion is initiated by disulfide reduction using a water-soluble phosphine, tris(2-carboxyethyl)phosphine (TCEP) which allows for subsequent substitution of the two maleimide bromides by the generated thiols. Reaction of salmon calcitonin (sCT) with 2,3-dibromomaleimide (1.1 excess) in the presence of TCEP (1.1 equiv) in aqueous solution at pH 6.2 gives complete production of a single conjugate which requires no workup. A linear methoxy poly(ethylene glycol) (PEG) was functionalized via a Mitsunobu reaction and used for the successful site-specific and rapid pegylation of sCT. This reaction occurs in 15 min with a small stoichiometry excess of the pegylating agent to give insertion at the disulfide with HPLC showing a single product and MALDI-ToF confirming conjugation. Attempts to use the group in a functional ATRP polymerization initiator led to polymerization inhibition. Thus, in order to prepare a range of functional polymers an indirect route was chosen via both azide and aniline functional initiators which were converted to 2,3-dibromomaleimides via appropriate reactions. For example, the azide functional polymer was reacted via a Huisgen CuAAC click reaction to an alkyne functional 2,3-dibromomaleimide. This new reagent allowed for the synthesis of conjugates of sCT with comb polymers derived from PEG methacrylic monomers which in addition gave appropriate cloud points. This reaction represents a highly efficient polymer conjugation method which circumvents problems of purification which normally arise from having to use large excesses of the conjugate. In addition, the tertiary structure of the peptide is efficiently maintained

    Bruno Latour no jardim da ilustração arqueológica

    No full text

    Practice, Performance, and Experience in Ritual Healing

    No full text

    Shamanism in the postmodern world

    No full text
    corecore